Universitätsklinikum Würzburg

Dosimetry of Nuclear Medicine Treatments

M. Lassmann

Direktor: Prof. Dr. A. Buck

Contents

- > Introduction
- Basic Principles of Dosimetry
- Major Clinical Applications
 - Diagnostics and Treatment of Thyroid Diseases
 - Treatment of Neuroendocrine Tumors and Prostate Cancer
 - > Bone Pain Palliation with Ra-223
 - Locoregional Treatment of Liver metastases
- Dosimetry Practice in Europe
- Conclusion and Outlook

Nuclear Medicine Dosimetry

Diagnostics	Therapy
Low activities ~<1GBq, short-lived nuclides, γ/β+ emitters	High activities ~>1GBq, long-lived nuclides, α/β- emitters
Stochastic risk	Deterministic damage and stochastic risk
Model-based dosimetry in a representative group of volunteers or patients	Patient-specific dosimetry
Optimize image quality	Maximize tumor absorbed doses
Minimizing radiation-associated risk	Minimize the absorbed doses to the organs-at-risk

Main List of Isotopes used for Therapy

Radio- nuclide	Halflife (h)	β _{max} (MeV)	γ (keV)	Max. range (mm)
I-131	192	0.61	364	2.0
Y-90*	64	2.3	-	12
Lu-177	161	0.50	208	1.5
Ra-223	274	5.8 (α) ≈ 28 (α)	81/84/95/ 144/154/269	0.05

^{*} β+-Emitter (emission probability: 63.8*10⁻⁶)

Alpha emitting isotopes for potential therapeutic applications in nuclear medicine

Radionuclide	Half-Life	Max. Particle Energy*
At-211	7.2 hrs	6.0 MeV
Bi-213	46 min	6.0 MeV
Ra-223	11.4 days	5.8 MeV
Ac-225	10.0 days	5.9 MeV

^{*} without progeny

Therapy Modalities

Metabolic active radiopharmaceuticals

- Radioiodine Therapy of Thyroid Diseases (benign/malignant)
- Bone Pain Palliative Treatment of Bone Metastases (Ra-223)

Specifically binding radiopharmaceuticals

- Compounds addressing specific antigens or receptors
 - Dotatate or Dotatoc
 - > MiBG
 - > PSMA-labelling ligands
- Treatment of lymphoma using antibodies

Locoregional therapies

- Selective Internal radiotherapy
- Radiosynoviorthesis

Frequency of Treatments in Europe

Contents

- > Introduction
- Basic Principles of Dosimetry
- Major Clinical Applications
 - Diagnostics and Treatment of Thyroid Diseases
 - Treatment of Neuroendocrine Tumors and Prostate Cancer
 - > Bone Pain Palliation with Ra-223
 - Locoregional Treatment of Liver metastases
- Dosimetry Practice in Europe
- Conclusion and Outlook

Fundamentals of Nuclear Medicine Dosimetry

- The administered activity distributes in the body
- Based on cellular functions and physiology, it accumulates in individual organs in a different way (biodistribution and biokinetics)
- For assessing radiation-related risks, the absorbed dose in the individual organs needs to be calculated
- For calculating absorbed dose, a formalism called MIRD*-Scheme was developed in 1976 (summing over all organ contributions)

MIRD Formalism*

- \blacktriangleright The mean absorbed dose D_T in the individual target organ T
- Assumption: activity is distributed uniformly in the organs

- ► A₀: administered activity
- ► $A_S(t')$: time activity curve of the source organ
- τ: time-integrated activity coefficient
- ► $S_{T \leftarrow S}$: mean absorbed dose per nuclear disintegration in the target organ
 - ► Nuclide specific
 - ► Geometry dependent

Dosimetry in Nuclear Medicine

Absorbed Dose Limits for Organs-at-Risk

Bone Marrow: 2 Gy

Kidneys (Emami 1991): 23 Gy

Kidneys (Threshold, MIRD 20): 33 Gy BED

Salivary Glands (Buchali 1991): 20 Gy

Lacrimal Glands (Parsons 1996): 40 Gy

Nasal Mucuous Membrane (Yin 2010): 37 Gy

Three Steps to Calculate Absorbed Doses

Quantitative Imaging (multiple time-points)

Quantitative SPECT (Single Photon Emission Computer Tomography)

- Isotope
- Energy Resolution
- Collimator
- Electronics
- Spatial Resolution
- Calibration Source
- Attenuation
- Scatter
- Noise
- Reconstruction
- Partial Volume Effect

Computer

SPECT/CT

integrated CT

- morphologic correlation
- Measurement of the attenuation map
- Scatter correction by using triple window techniques
- quantitative Analysis

Validation of a SPECT/CT Quantification

Calibration Experiment

- Intevo Bold (0.95cm crystal)
- ▶ Jaszczak phantom (6.7 L)+ Lu-177 solution (73.5 kBq/mL)
- ► SPECT-CT acquisition (MELP, 60×30s views, NCO)
- xSPECT Reconstruction (48 iterations, 1 subset, no filtering)
- VOI around entire phantom→ Activity in Bq/mL

xSPECT Reconstruction

Dose Calibrator: 490.6 MBq

xSPECT Quant: 496.5 MBq

→ Error of only 1.2%

Methods: xSpect i48s1G0

Three Steps to Calculate Absorbed Doses

- I. Quantitative Imaging (multiple time-points)
- II. Integration of the Time-Activity Curve

Three Steps to Calculate Absorbed Doses

Integration of the Time-Activity Curve

Guerriero et al. Kidney dosimetry in ¹⁷⁷Lu and ⁹⁰Y peptide receptor radionuclide therapy: influence of image timing, time-activity integration method, and risk factors. Biomed Res Int. 2013;2013:935351.

Three Steps to Calculate Absorbed Doses Integration of the Time-Activity Curve

Guerriero et al. Kidney dosimetry in ¹⁷⁷Lu and ⁹⁰Y peptide receptor radionuclide therapy: influence of image timing, time-activity integration method, and risk factors. Biomed Res Int. 2013;2013:935351.

Three Steps to Calculate Absorbed Doses

- I. Quantitative Imaging (multiple time-points)
- II. Integration of the Time-Activity Curve
- III. Determination of the S-Values

Anthropomorphic phantoms

Human anatomy representation: simplified organ shapes realistic density

Contents

- > Introduction
- Basic Principles of Dosimetry
- Major Clinical Applications
 - Diagnostics and Treatment of Thyroid Diseases
 - Treatment of Neuroendocrine Tumors and Prostate Cancer
 - > Bone Pain Palliation with Ra-223
 - Locoregional Treatment of Liver metastases
- Dosimetry Practice in Europe
- Conclusion and Outlook

The Treatment of Benign Thyroid Diseases with I-131

Dosing: Either fixed activities (< 1 GBq) or dosing based on pre-therapeutic dosimetry

The Treatment of Benign Thyroid Diseases

Fig. S3 Model of the ¹³¹I kinetics in benign thyroid disease with 2 compartments, blood pool and target mass. A_x denote activities, k_x transfer rates.

Eur J Nucl Med Mol Imaging DOI 10.1007/s00259-013-2387-x

GUIDELINES

EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases

Radioiodine Therapy of Thyroid Cancer with I-131

Title:

Z Med Phys

December 2011

Dosing: Either fixed activities (> 1 GBq) or dosing based on pretherapeutic dosimetry

The Role of Dosimetry in the Treatment of Thyroid Cancer

Lesion Dosimetry

Dose to the Lesion in Gy/GBq

Blood (Bone Marrow) Dosimetry

Critical Blood Activity (max 2 Gy)

Eur J Nacl Med Mol Insiging (2006) 35:1405-1412 DOI to:1007/s00259-008-0761-a

GUIDELINES

EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry

I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy

The Treatment of Neuroendocrine Tumors

Dosing: 4 or more cycles of 7.4 GBq Lu-177

J Nucl Med 2013; 54:1-9

Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing ¹⁷⁷Lu-DOTA-Octreotate Treatment

The Treatment of Neuroendocrine Tumors

Dose Mapping After Endoradiotherapy with ¹⁷⁷Lu-DOTATATE/DOTATOC by a Single Measurement After 4 Days

Percentage deviation of approximation from actual time integral for single measurements after t = 96h

The Treatment of Prostate Cancer with Lu-177-PSMA

Waterfall graph presenting PSA response after 1 cycle of ¹⁷⁷Lu-PSMA-617 therapy.

Clemens Kratochwil et al. J Nucl Med 2016;57:1170-1176

Dosing: 4 or more cycles of 5 - 7.4 GBq Lu-177

(c) Copyright 2014 SNMMI; all rights reserved

The Treatment of Prostate Cancer with Lu-177-PSMA

The Treatment of Prostate Cancer with Ra-223

Ra-223: Energies released per decay

Emitted energy:

93.5 % alpha particles

3.2 % beta particles

<2 % photons (gamma or X)

Activity to administer:
 55 kBq/kg, 6 cycles

- 11.4 days half-life
- 20 MeV of energy per starting atom and the first two daughters
- 28 MeV through complete decay of the progeny

Eur J Nucl Med Mol Imaging (2013) 40:207-212 DOI 10.1007/s00259-012-2265-y

CL 5.78 MeV

219Rn

4.0 s

Cl. 6.88 MeV 223Ra

11.4 d

ORIGINAL ARTICLE

Dosimetry of ²²³Ra-chloride: dose to normal organs and tissues

Michael Lassmann - Dietmar Nosske

The Treatment of Prostate Cancer with Ra-223

- Patients with painful osseous metastases and reduced quality of life
- Increased uptake in places of augmented bone metabolism
- Sparing of sound bone tissue

Original article

Quantitative imaging of ²²³Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases

Cecilia Hindorf^{a,d}, Sarah Chittenden^a, Anne-Kirsti Aksnes^a, Chris Parker^b and Glenn D. Flux^a

Selective Internal Radiotherapy with Y-90

Microspheres in small vessels

Tumour

Vein

Activity: 2-4 GBq (Y-90), dosing based either on dosimetry or BSA or vendor-specific calculations

Transarterial embolization of radioactive labeled microspheres

Highly selective tumor uptake by intra-arterial administration of the particles through the a. hepatica

Selective Internal Radiotherapy with Y-90

Eur J Nucl Med Mol Imaging (2010) 37:1654-1662 DOI 10.1007/s00259-010-1470-9

ORIGINAL ARTICLE

Feasibility of ⁹⁰Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres

Contents

- > Introduction
- Basic Principles of Dosimetry
- Major Clinical Applications
 - Diagnostics and Treatment of Thyroid Diseases
 - Treatment of Neuroendocrine Tumors and Prostate Cancer
 - > Bone Pain Palliation with Ra-223
 - Locoregional Treatment of Liver metastases
- Dosimetry Practice in Europe
- Conclusion and Outlook

Dosimetry for Therapy procedures	12
¹³¹ I Nal for the treatment of benign thyroid disease	13
131 Nal for the treatment of differentiated thyroid cancer (DTC) with ablative	
intent and in the case of recurrent disease	19
131 mIBG for the treatment of neuroblastoma in children and young people adults	25
131 mIBG for the treatment of neuroendocrine tumours in adults	29
177Lu-DOTATATE for the treatment of neuroendocrine tumours	33
90Y somatostatin analogues for the treatment of neuroendocrine tumours	37
Beta emitters for bone pain palliation	41
²²³ Ra dichloride for the treatment of bone metastases from castration resistant prostate cancer	45
177Lu-PSMA ligands for the treatment of metastatic castration-resistant prostate cancer	49
90Y microspheres for the treatment of primary and metastatic liver cancer	53
⁹⁰ Y-ibritumomab tiuxetan for radioimmunotherapy of non-Hodgkin lymphoma	57
Radiosynovectomy	63

Internal Dosimetry Task Force Report on:

Treatment Planning For Molecular Radiotherapy: Potential And Prospects

European Association of Nuclear Medicine

Analysis of Potential and Prospects for **Treatment Planning** in Preparation of the Implementation of the European **Council Directive** 2013/59

Available at: https://www.eanm.or g/publications/idtfreport/

Therapy Modalities

Treatment Planning For Molecular Radiotherapy: Potential And Prospects

	Section Assessment of Section 180
Dosimetry for Therapy procedures	12
→ ¹³¹ I Nal for the treatment of benign thyroid disease	13
→ ¹³¹ I NaI for the treatment of differentiated thyroid cancer (DTC) with ablative	
intent and in the case of recurrent disease	19
¹³¹ I mIBG for the treatment of neuroblastoma in children and young people adults	25
131 mIBG for the treatment of neuroendocrine tumours in adults	29
→ ¹ ⁷⁷ Lu-DOTATATE for the treatment of neuroendocrine tumours	33
90Y somatostatin analogues for the treatment of neuroendocrine tumours	37
Beta emitters for bone pain palliation	41
223Ra dichloride for the treatment of bone metastases from castration resistant prostate ca	incer 45
→ ¹ ¹⁷⁷ Lu-PSMA ligands for the treatment of metastatic castration-resistant prostate cancer	49
→ ⁹⁰ Y microspheres for the treatment of primary and metastatic liver cancer	53
90Y-ibritumomab tiuxetan for radioimmunotherapy of non-Hodgkin lymphoma	57
Radiosynovectomy	63

Open Access

ORIGINAL RESEARCH

Dosimetry or Not?

Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey

Dosimetry Practice in Europe

ORIGINAL RESEARCH

Open Access

Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey

Conclusions and Outlook

General MIRD equation:

$$\overline{D}_k = \sum_h \tilde{A}_h \cdot S_{(k \leftarrow h)}$$

- > How dosimetry is performed depends on the
 - Clinical Application
 - Local Practice
 - Availability of Resources
 - Legal Requirements
- Dosimetry has been successfully applied in a several clinical applications, however there is further need for standardization

Conclusions and Outlook

MEDIRAD

Implications of Medical Low Dose Radiation Exposure

WP 2, Task 2.3:

Dose evaluation and optimisation of multimodality imaging

WP 3:

Impact of low dose radiation exposure from I-131 radioiodine (NaI) ablation of thyroid cancer

Start date: 01-June-2017

Duration: 48 Months

WP No	Work Package Title	
WP1	Activity standards for quantitative imaging	
WP2	Image-based quantification of 3D activity distributions	
WP3	Computer modelling of time-variable activity distributions in multimodal imaging	
WP4	Accuracy and traceability of dose calculations	

Start date: 01-June-2016

Duration: 36 Months

Thank you!

